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Abstract

A level-set based approach for the determination of a piecewise constant density function from data of its Radon trans-
form is presented. Simultaneously, a segmentation of the reconstructed density is obtained. The segmenting contour and
the corresponding density are found as minimizers of a Mumford–Shah like functional over the set of admissible contours
and – for a fixed contour – over the space of piecewise constant densities which may be discontinuous across the contour.
Shape sensitivity analysis is used to find a descent direction for the cost functional which leads to an update formula for the
contour in the level-set framework. The descent direction can be chosen with respect to different metrics. The use of an
L2-type and an H1-type metric is proposed and the corresponding steepest descent flow equations are derived. A heuristic
approach for the insertion of additional components of the density is presented. The method is tested for several data sets
including synthetic as well as real-world data. It is shown that the method works especially well for large data noise (�10%
noise). The choice of the H1-metric for the determination of the descent direction is found to have positive effect on the
number of level-set steps necessary for finding the optimal contours and densities.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In medical imaging, computerized tomography (CT) is a widely used technique for the determination of the
mass density f of a sample from measurements of the attenuation of X-ray beams sent through the material
along different angles and offsets. The measured data gd are connected to the density f via the Radon
Transform,
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gdðs;xÞ ¼ Rf :¼
Z

R

f ðsxþ tx?Þdt;
ðs;xÞ 2 R� S1. To compute the density distribution f the equation gd = Rf has to be inverted. It is a well-
known fact that the Radon transform is not continuously invertible e.g. as a mapping from L2 into L2.
For this reason, regularization methods have to be used in the presence of data noise. Probably the most
widely used algorithm for the inversion of tomography data is the filtered back projection method [43,38].
In principle, this algorithm combines Fourier data smoothing techniques with the application of the inverse
operator R�1 restricted to a finite dimensional subspace of the data space. Other methods include the Alge-
braic Reconstruction Technique (ART) [20] and classical regularization methods as truncated singular value
decomposition or Tikhonov regularization (see [19]). For a good survey on the analytical properties of the
Radon transform and its inverse operator and on established reconstruction techniques we refer to [33].

In many practical applications one is not only interested in the reconstruction of the density distribution
but also in the extraction of some specific features within the image which represents the density distribution
of the sample. For example, the planning of surgery might require the determination of the boundaries of
inner organs like liver or lung or the separation of cancerous and healthy tissue. To this end, image segmen-
tation methods are applied – a posteriori – to the output of the inversion method. Besides region growing algo-
rithms and other ideas based on local criteria for the classification of pixels according to their membership in a
certain region, deformable interfaces (snakes, active contours, level-set techniques) have received considerable
attention in image segmentation in the recent years. In the latter approaches a collection of curves (surfaces for
3-D data) is introduced and iteratively updated in such a way that finally the curves separate approximately
homogenous regions. This is achieved by minimizing an energy functional which penalizes the occurrence of
inhomogeneous features within the distinct regions where the separating contours are the optimization vari-
ables. Different energy functionals like e.g. elastic energy in connection with edge detectors [28,9,15,23] region
based functionals [37,27,26] or Mumford–Shah like functionals [11,13,22] have been considered and different
geometric models for the curves as for instance parametrized snakes [45] or level-set techniques [35,42] have
been used. We refer also to the monographs [3,41] for more detailed expositions of the subject.

Segmentation methods do often fail when the image is heavily contaminated with noise. For computerized
tomography, the quality of reconstruction of the density function will be limited due to the data noise, and
image postprocessing [47] might be necessary before segmentation. Consequently, the procedure for extracting
the contour of an object in a density image usually includes the following steps:
data!R
�1

density function! image postprocessing! segmentation:
The main drawback of this approach is that the measured data are only used for the reconstruction of the
density distribution f. Image postprocessing and segmentation rely only on the density and errors in the recon-
struction – due to numerical problems or a wrong choice of the regularization parameters – will inevitably
tamper the segmentation.

The main goal of this paper is the development of an algorithm that gives simultaneously a reconstruction
and a segmentation directly from the measured data. To this end, we consider the Mumford–Shah like
functional
Jðf ;CÞ ¼ kRf � gdk
2
L2ðR�S1Þ þ ajCj: ð1:1Þ
Here C is a geometric variable which represents the set of points on or across which the density distribution f is
allowed to have certain singularities. The main idea using Mumford–Shah approaches is to introduce the sin-
gularity set as an additional unknown which can be chosen within an appropriate class of sets G. For fixed C
the density f is chosen from a function space X(C) which allows singularities of a prescribed kind on or across
C. Usually a regularization term kf kp

X ðCÞ is added to the functional to ensure well-posedness of the minimiza-
tion with respect to f. The norm i Æ iX(C) is constructed in such a way that the occurrence of singularities on or
across C is not penalized by i Æ iX(C). In our approach we choose X(C) as the space of functions which are piece-
wise constant on R2 n C. The rather low dimension of this space automatically ensures well-posedness with
respect to f. Thus, a regularization term penalizing f is not necessary. The classical Mumford–Shah functional
(where the operator R in (1.1) is replaced by the identity and a penalty term acting on f is added) was originally
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designed to identify the set of jump singularities of a given function and – simultaneously – to find a smooth
approximation of the function away from the singularities (see [32,10,11,22]). In our case the unknown image
and the data are related via the Radon transform and not via the identity. The functional (1.1) depends on the
functional variable f (the density) as well as a geometrical variable C. A Mumford–Shah approach for the
inversion of ill-poses operator equations has been used before in [4,29], where the problem of deblurring of
a given image is considered. In these papers, the Radon transform in (1.1) is replaced by a convolution oper-
ator with a smoothing (possibly unknown) kernel. In [4] an Ambrosio-Tortorelli type approximation of the
Mumford–Shah functional is used (see [1] for the origin of this approximation), whereas the authors [29]
use a level-set based approach.

For medical applications, it is reasonable to restrict the reconstruction to densities f that are constant with
respect to a partition of the body, as the tissues of inner organs, bones, or muscles have approximately con-
stant density. For the following we assume that – for fixed C – the density f is constant on each connected
component of DnC, where D denotes the domain of definition of f. The geometrical variable C then denotes
a collection of closed curves that describe the boundaries of the regions where the function is constant, and |C|
is the sum of the lengths of all these curves. In our work, we extend the classical piecewise constant Mumford–
Shah functional as already considered by Mumford and Shah [32] and by Chan and Vese [11] in the level-set
context to the situation where the identity operator is replaced by the Radon transform R. In fact, our
approach has much im common with the Chan–Vese model and the analysis and implementation of our
method can be performed along the same lines as for the Chan–Vese model. Replacing the identity I by R,
however, yields a more complicated optimality system for the piecewise constant function values of the density
and requires more involved techniques for the shape sensitivity analysis.

By minimizing the Mumford–Shah functional (1.1), the first term on the right hand side of (1.1) ensures
that the reconstruction for the functional parameter f is close enough to a solution of the equation Rf = g,
whereas the term a|C| controls the length of the boundary of the partition of the image. Consequently, if
the regularization parameter is chosen properly, we obtain both a reconstruction for the density f and a seg-
mentation of the image, represented by the curves C, directly from the data gd.

The main difficulty in using a Mumford–Shah approach lies in the different structure of the geometric var-
iable (the singularity set) and the functional variable (the reconstruction) which cannot be easily treated in a
straight forward way within the framework of nonlinear optimization. Usually either the geometrical variable
is eliminated – leading to phase field like formulation with non-convex cost functionals for the functional var-
iable [6,10] – or the functional variable is eliminated and the problem is reduced to a shape optimization prob-
lem [12,46,22]. Here, we follow the second approach, i.e. in
min
f ;C

Jðf ;CÞ; ð1:2Þ
we first minimize with respect to f and we denote the corresponding solution by f(C). In a second step the re-
duced functional
bJ ðCÞ ¼ Jðf ðCÞ;CÞ ð1:3Þ
is minimized with respect to C. The proposed algorithm uses a preconditioned shape gradient of bJ ðCÞ for the
construction of a descent direction for the functional. From the point of view of algorithmic innovation the
introduction of a preconditioner which is related to a Newton type descent direction for the geometric regu-
larization term a|C| is one of the major issues of our paper. The preconditioned gradient direction produces
smoother intermediate geometries and allows to use larger step sizes. It is also shown experimentally that,
in the preconditioned formulation, the regularizing effect of the length term a|C| is not nullified by the possible
instability of the time-stepping procedure due to the choice of too large time-steps, as it can be the case for the
L2-gradient descent.

The update of the geometry is done using the level set methodology. The idea to combine level set and
shape sensitivity techniques for the solution of inverse problems was, to our knowledge, first used in [40].
Other level-set based methods for inverse problems involving shapes were considered in [30,25,36,5,
8,24,14,18,17] and others.
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We also address the problem of topology changes during the propagation of the interface C towards a min-
imum of (1.3). Although it is possible in the level set context for one region X with boundary C to split into
two regions, and, vice versa, for two regions to merge into one, it is well known that it is usually not possible to
create new regions inside already existing ones. Based on the functional gradient of (1.1) we propose a method
that generates a new component of the partition of the image at locations where it is beneficial to do so. With
this, we can avoid local minima at which the algorithm otherwise would get stuck.

In the last section we provide some reconstructions/segmentations for synthetic as well as for real data. It
turns out that our method works particularly well if the data are very noisy. In this case, we obtain even better
reconstructions for the functional parameter than standard regularization methods. The method is compared
with a Tikhonov regularization approach with a total variation regularization term. Numerical studies com-
paring different parameter choices are presented.
2. A piecewise constant Mumford–Shah functional for X-ray tomography

Suppose we are given noisy data gd : R� S1 ! R of the Radon transform of an unknown density
f : D � R2 ! R, i.e.
gdðs;xÞ � Rf ¼
Z

R

f ðsxþ tx?Þdt: ð2:1Þ
Moreover, we assume that the density data f are piecewise constant on an (unknown) partition of the image
domain D, i.e. we assume that f is a feasible density if there exists a finite collection of closed curves C � D

such that f is constant on every connected component of DnC. We point out already at this point that we shall
use a level-set technique to represent the bounding curves C, i.e. we assume that C = {x 2 D : /(x) = 0} with a
level set function / : D! R. The choice of level-sets for the description of C automatically renders certain
topological configurations (triple junctions, crossing branches) as unfeasible or at least as very singular.
The precise topological requirements on C will be given later.

Let G denote the set of all (feasible) finite collections of closed curves. For every C 2 G let fXC
i g

nðCÞ
i¼1 denote

the set of all connected components of DnC. We define
PCðD n CÞ ¼
XnðCÞ
i¼1

fivXC
i

: fi 2 R

( )
� L2ðDÞ; ð2:2Þ
where vX denotes the characteristic function of the set X.
We want to find simultaneously the singularity set C and the density function f 2 PC(DnC) such that the

Radon transform of f fits the given data gd best possible in a least-squares sense. We therefore consider the
Mumford–Shah like functional
Jðf ;CÞ ¼ kRf � gdk
2
L2ðR�S1Þ þ ajCj; ð2:3Þ
where |C| is the one-dimensional Hausdorff measure of C. Note that it is not necessary to add a regularization
term for f since – for fixed C – the density f is an element in the finite (usually low) dimensional space
PC(DnC). It follows that the identification of f from gd for fixed C is well-posed. However, the dependence
of the functional on the geometric variable C might be insensitive. For this reason, the length term a|C| is
added as a regularization term to the data fit term to guarantee well-posedness of the minimization of J with
respect to C.

An algorithm for the minimization of the functional (2.3) which updates both variables C and f indepen-
dently is difficult to formulate. This is mainly due to the fact that the geometry C defines the domain of def-
inition of the other variable f and thus does not allow to tread f and C as independent. We therefore choose the
following reduced formulation: for fixed C solve the variational problem
min
f2PCðDnCÞ

Jðf ;CÞ: ð2:4aÞ
Denote the solution by f(C). With that solve the shape optimization problem
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min
C
bJ ðCÞ with bJ ðCÞ ¼ Jðf ðCÞ;CÞ: ð2:4bÞ
The following section deals with the numerical treatment of the reduced formulation (2.4).

3. Minimization algorithm

We now describe first in an overview and later in detail the proposed numerical approach for the minimi-
zation of the reduced functional (2.4).

Step 1: Choose an initial estimate C0 for the geometry.
Step 2: For fixed C minimize J with respect to f 2 PC(DnC) by solving the respective optimality system.

Denote the solution by f(C).
Step 3: Consider the reduced functional
bJ ðCÞ ¼ Jðf ðCÞ;CÞ: ð3:1Þ

Find a descent direction for the functional bJ with respect to the geometric variable.
Step 4: Update C by moving it in the chosen descent direction according to a chosen line-search rule.
Step 5: Check for optimality:

� If the shape gradient is large go to step 2.
� If the shape gradient is small determine the derivative of the cost functional with respect to the functional

variable f. If a significant maximum or minimum exists for the functional gradient introduce a new com-
ponent of C in the vicinity of the extremum. Go back to Step 2.

We now present a detailed description of the individual steps of the algorithm.

3.1. Step 2: Solution of the optimality system with respect to f

The necessary optimality conditions for the minimum f(C) of J with respect to f for fixed C read as
of Jðf ðCÞ;CÞh ¼ hRf ðCÞ � gd;RhiL2ðR�S1Þ ¼ 0 ð3:2Þ
for all h 2 PC(DnC) where ofJ denotes the derivative of J with respect to the first variable. The characteristic
functions fvXC

i
g form a basis in PC(DnC). It is therefore sufficient for the determination of f(C) to claim that
hR�ðRf ðCÞ � gdÞ; vXC
i
iL2ðDÞ ¼ 0
for all i. With f ðCÞ ¼
P

jfjðCÞvXC
j
, we obtain the optimality system
X

j

fjðCÞ
Z

XC
i

R�RvXC
j

dx ¼
Z

XC
i

R�gd dx ð3:3Þ
for all connected components XC
i of DnC. It is known (cf. [33,39]) that the adjoint operator to the Radon

transform (2.1) is given byZ

R�gðxÞ ¼

x2S1

gðhx; xi;xÞdx; ð3:4Þ
where Æx, xæ denotes the scalar product in R2 which makes sense if we identify S1 with the unit circle in R2. To
assemble the system matrix for (3.3) we have to calculate the quantities
aij ¼
Z

XC
i

R�RvXC
j

dx:
Using (3.4) we find
aij ¼
Z

x2XC
i

Z
x2S1

Z
t2R

vXj
ðhx; xixþ tx?Þdt dx

� �
dx:
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With y = Æx,xæx + tx^, we obtain
aij ¼ 2

Z
x2XC

i

Z
y2XC

j

1

jx� yj dydx: ð3:5Þ
The factor 2 in (3.5) comes from the fact that each point y in XC
j corresponds to two different points (x, t) and

(�x, �t) in S1 � R. Using
1

jy� xj ¼
1

n� 1
divy

y� x

jy� xj

� �
ð3:6Þ
in Rn for y 6¼ x we can rewrite the inner domain integral as a boundary integral. Using (3.6) in dimension n = 2
we get
aij ¼ 2

Z
x2XC

i

Z
y2oXC

j

y� x

jy� xj ; njðyÞ
� �

dSðyÞdx; ð3:7Þ
where nj ¼ nXC
j

is the unit exterior normal vector to XC
j . The remaining domain integral can be transformed

into a boundary integral using
y� x

jy� xj ; njðyÞ
� �

¼ �divxðjx� yjnjðyÞÞ:
With this we obtain
aij ¼ �2

Z
x2oXC

i

Z
y2oXC

j

jy� xjhniðxÞ; njðxÞidSðyÞdSðxÞ: ð3:8Þ
For the right hand side of the optimality system (3.3) we have
gi ¼
Z

XC
i

R�gd dx ¼
Z

x2XC
i

Z
x2S1

gdðx � x;xÞdxdx: ð3:9Þ
Combining the above results the vector f(C) = (fi(C))t is found as the solution to
AfðCÞ ¼ g ð3:10Þ

where A = (aij) with aij given by (3.8) and g = (gi)

t with gi given by (3.9).
3.1.1. Assembling of aij

Let us address the problem of assembling the system matrix (3.10). Let {Ck} denote the set of all connected
components of C. In a generic situation, where C – being the zero level-set of a function / – has no triple junc-
tions, each component Ck separates exactly two components XC

i1ðkÞ and XC
i2ðkÞ, i.e. Ck ¼ oXC

i1ðkÞ \ oXC
i2ðkÞ. Some-

times we shall label the components of C by subscripts ‘i, j’ representing the components XC
i and XC

j which are
separated by Ck. With this we have (i, j) = (i1(k), i2(k)) and we write Ck = Ci,j. Moreover let
cðiÞ ¼ fm : m 6¼ i; oXC
i \ oXC

m 6¼ ;g
and
dðkÞ ¼ fi1ðkÞ; i2ðkÞg:

Obviously we have oXC

i ¼ [m2cðiÞCi;m.
Each XC

i is a connected set on which the level set function / is either everywhere positive or everywhere
negative. We can therefore define
sðiÞ ¼ �signð/ðxÞÞ

with some arbitrarily chosen x 2 XC

i . We also assign each x 2 C a unit normal vector nC(x) which, by conven-
tion, is the exterior normal vector to the set / < 0. We thus have
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nXC
i
ðxÞ ¼ sinCi;mðxÞ ð3:11Þ
for every x 2 Ci,m. We use the abbreviations ni;mðxÞ ¼ nCi;mðxÞ and analogously nkðxÞ ¼ nCk ðxÞ. With this we get
aij ¼ �2sisj

X
m2cðiÞ

X
n2cðjÞ

Z
x2Ci;m

Z
y2Cj;n

jy� xjhni;mðxÞ; nj;nðxÞidSðyÞdSðxÞ: ð3:12Þ
We assemble the coefficients aij by going in a double loop through the components Ck and collecting the con-
tributions of each pair (Ck, Cl) to aij. By (3.12), the integral
Z

x2Ck

Z
y2Cl

jy� xjhnkðxÞ; nlðyÞidSðyÞdSðxÞ
contributes to each aij for which i 2 d(k) and j 2 d(l).

3.2. Step 3: Shape sensitivity analysis and construction of the descent direction with respect to C

To find a descent direction for bJ , we differentiate the reduced functional bJ ðCÞ ¼ Jðf ðCÞ;CÞ with respect to
the geometry C. We use techniques from shape sensitivity calculus described e.g. in [44,16,2,22].
Rewriting the cost functional (2.3) we get
Jðf ;CÞ ¼
X

i

fiRvXC
i
� gd;

X
i

fiRvXC
j
� gd

* +
L2ðS1�RÞ

þ a
Z

C
1dS

¼
X

i;j
fifjhRvXC

i
;RvXC

j
iL2ðS1�RÞ � 2

X
i

hRvXC
i
; gdiL2ðS1�RÞ þ hgd; gdiL2ðS1�RÞ þ a

Z
C

1dS

¼ 2
X

i;j

fifj

Z
x2XC

i

Z
y2XC

j

1

jx� yj dydx� 2
X

i

Z
x2XC

i

Z
x2S1

gdðx � x;xÞdxdx

þ hgd; gdiL2ðS1�RÞ þ a
Z

C
1dS: ð3:13Þ
Here we used aij ¼ hRvXC
i
;RvXC

j
iL2ðS1�RÞ and (3.5).

The reduced functional bJ ðCÞ ¼ Jðf ðCÞ;CÞ depends explicitly on C via the domains of integration in (3.13)
and via the solution f(C) of (3.3). Thus, the derivative of bJ with respect to C formally reads as
dbJ ðC; F Þ ¼ of Jðf ðCÞ;CÞf 0ðC; F Þ þ dCJðf ðCÞ;C; F Þ ð3:14Þ

where ofJ denotes the derivative with respect to f for fixed C, f 0(C; F) is the shape derivative of f with respect to
C in direction F and dC J(f(C), C; F) denotes the Eulerian derivative of J in direction F for fixed f, i.e. the deriv-
ative of bJ with respect to perturbations of C of the form
Ch ¼ fxh ¼ xþ hF ðxÞnðxÞ : x 2 C; nðxÞ . . . normal vector to C in xg:

With this, the Eulerian (directional) derivative is defined as
dJðf ;C; F Þ ¼ lim
h!0

1

h
ðJðf ;ChÞ � Jðf ;CÞÞ:
The first term on the right hand side – the derivative of the cost functional J with respect to f at f(C) – van-
ishes due to the necessary optimality condition (3.2) which is satisfied for f = f(C). The fact that the first term
on the right hand side of (3.14) vanishes is always true for reduced functionals of the type (2.4). The derivative
of (3.13) for fixed f with respect to C occurring in the various domains of integration can be found using well-
known results for domain- or boundary functional of the form
J dðXÞ ¼
Z

X
g dx or J bðCÞ ¼

Z
C

hdS
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for which the differentiation rules
dJ dðX; F Þ ¼
Z

oX
gF dS and dJ bðC; F Þ ¼

Z
C
ðhrh; ni þ hjÞF dS
hold. Here j is the mean curvature of C. A derivation of the above results can be found e.g. in [44,16,23]. We
therefore obtain
dbJ ðC; F Þ ¼ 2
X

i;j

fifj

Z
x2oXC

i

Z
y2XC

j

1

jx� yj dyF ðxÞdSðxÞ
 

þ
Z

y2oXC
j

Z
x2XC

i

1

jx� yj dxF ðyÞdSðyÞ
!

�2
X

i

fi

Z
x2oXC

i

Z
x2S1

gdðx � x;xÞdxF ðxÞdSðxÞ þ
Z

C
jðxÞF ðxÞdSðxÞ:
With (3.6) and the divergence theorem we can transform the domain integrals above into boundary integrals.
We get
dbJ ðC; F Þ ¼ 2
X

i;j

fifj

Z
x2oXC

i

Z
y2oXC

j

y� x

jy� xj ; njðyÞ
� �

dSðyÞF ðxÞdSðxÞ
 

þ
Z

y2oXC
j

Z
x2oXC

i

x� y

jx� yj ; niðxÞ
� �

dSðxÞF ðyÞdSðyÞ
!

�2
X

i

fi

Z
x2oXC

i

Z
x2S1

gdðx � x;xÞdxF ðxÞdSðxÞ þ
Z

C
jðxÞF ðxÞdSðxÞ:

ð3:15Þ
It remains to arrange the terms in (3.15) according to the components {Ck} of C. Note that every Ck appears
two times as domain of integration for every integral in (3.15), once as subset of oXC

i1ðkÞ and once as subset of
oXC

i2ðkÞ where {i1(k), i2(k)} = d(k). With (3.11) we find for the first term (which we denote by dJ1(C; F)) in
(3.15):
dJ 1ðC; F Þ ¼ 2
X

i;j

fifj

Z
x2oXC

i

Z
y2oXC

j

y� x

jy� xj ; njðyÞ
� �

dSðyÞF ðxÞdSðxÞ

¼ 2
X

k;l

X
p2dðkÞ

X
q2dðlÞ

spsqfpfq

Z
x2Ck

Z
y2Cl

y� x

jy� xj ; n
kðyÞ

� �
dSðyÞF ðxÞdSðxÞ:
A symmetry argument shows that the second term in (3.15) has exactly the same form as dJ1(C; F). If we
assemble the third integral over the components Ck of C, we likewise have to take into account the fact that
each integral over Ck appears twice. We thus obtain
dJðC; F Þ ¼ 4
X

k

Z
x2Ck

X
p2dðkÞ

spfp

X
l

X
q2dðlÞ

sqfq

Z
x2Ck

y� x

jy� xj ; n
kðyÞ

� �
dSðyÞ

 !
� F ðxÞdSðxÞ

�2
X

k

Z
x2Ck

X
p2dðkÞ

spfp

Z
x2S1

gdðx � x;xÞdx

 !
F ðxÞdSðxÞ þ

X
k

Z
x2Ck

jðxÞF ðxÞdSðxÞ:

ð3:16Þ

A direction F : C! R for which the directional derivative (3.16) is negative is called a descent direction of

the functional (3.1). Since different scaling of the descent direction can always be compensated by the choice of
the step-length of the optimization algorithm, a descent direction is usually normalized to iFi = 1. A steepest

descent direction is a solution to the constrained optimization problem
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min
F

dJðC; F Þ such that kF k ¼ 1: ð3:17Þ
Note that we have not yet specified with respect to which norm for F the steepest descent direction is found.
Different norms will, in general, give different steepest descent directions.

The steepest descent direction F 0
sd : C! R with respect to the L2-metric on C is found as
F 0
sdðxÞ ¼ �4

X
p2dðkÞ

spfp

X
l

X
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Z
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kðyÞ

� �
dSðyÞ

 !

þ 2
X

p2dðkÞ
spfp

Z
x2S1

gdðx � x;xÞdx

 !
� jðxÞ ð3:18Þ
for x 2 C.
In our numerical algorithm, we suggest to employ the steepest descent direction with respect to the

weighted H1-norm
kfk2
H1ðCÞ ¼ kfk

2
L2ðCÞ þ

m
2
krCfk2

L2ðCÞ; ð3:19Þ
where $C denotes the tangential gradient of a function defined on C. This choice is motivated by the second
shape derivative of the regularization term Jreg(C) = |C|. It is found that
d2J regðC; F ;GÞ ¼
Z

C
hrCF ;rCGidS
for C � R2 (see [23,31]). The weighted H1-norm is therefore a positive definite approximation of a semi-norm
corresponding to the second order expansion of the regularization term. To find the steepest descent direction,
we have to solve (3.17) with the norm constraint
kF k2
L2ðCÞ þ

m
2
krCF k2

L2ðCÞ ¼ 1:
It is easily seen that the Karush–Kuhn–Tucker conditions imply that the steepest descent direction has the
form
F 1
sd ¼ ðid� mDCÞ�1F 0

sd; ð3:20Þ
where DC denotes the Laplace–Beltrami operator on C. The L2-steepest descent direction is therefore precon-
ditioned with an inverse elliptic operator.
3.3. Step 4: Update of the geometry via the level set technique

Using Osher’s and Sethian’s idea [34], propagation of an interface C(t) can equivalently be expressed by a
propagation law for a corresponding time-dependent level set function /(t, x) where the connection between
interface and level-set function is given by C(t) = {x 2 D : /(t, x) = 0}. Setting F equal to a descent direction
obtained above, the level set equation
/t þ F jr/j ¼ 0 ð3:21Þ
propagates / and simultaneously C in a direction of decreasing cost functional values. For the determi-
nation of an appropriate time-step for the level-set equation we use an Armijo line search technique.
The level-set equation is solved using a WENO scheme for the update (see [35] for details of the
implementation).



548 R. Ramlau, W. Ring / Journal of Computational Physics 221 (2007) 539–557
3.4. Step 5: Inserting new components of C

The derivative (3.16) describes the sensitivity of the cost functional with respect to local (small) perturba-
tion of the geometrical variable C. In the level-set context these perturbations can involve topology changes
such as splitting or merging of components of C. However, the creation of a new connected component away
from the current interface C is not a feasible perturbation of the geometry, neither in the classical setting
(using perturbations of the identity or the speed method to construct perturbations), nor in the level set set-
ting. Information whether the introduction of a new component of C is favorable with respect to the optimi-
zation is, therefore, not available from classical shape sensitivity analysis. Numerical experiments indicate
that the evolution of the geometry C frequently gets stuck in local minima for which an outer contour of
a large object is found, but other objects lying within the larger one are not reconstructed. In such a situation,
the shape gradient (3.18) is small, but the data fit iRf � gdi is not yet good enough. The data fit term describe
the quality of the reconstruction in the offset-angle variables (s, x). We are, however, interested in localized
information on the quality of the reconstruction in physical domain. An indicator whether the data fit can be
improved by allowing the density f to change away from the current interface C is the magnitude of the func-

tional derivative
of Jðf ;CÞ ¼ R�ðRf � gdÞ: ð3:22Þ
The functional derivative of J : D! R is large at locations where a change of the density has a large effect on
the cost functional. Using this property we propose the following heuristic for the introduction of new com-
ponents of C:

� Check if the shape gradient (3.18) is small. If this is the case:
– Calculate the functional derivative (3.22).
– Use a statistical test to check if ofJ has a significant maximum or minimum.
– If a significant maximum or minimum exists, determine locations where the values of ofJ deviate signif-

icantly from the mean. Introduce a new component of C which encloses the extremum. Define a new
level-set function for which the zero level-set is given by the zero level-set of the old level-set function
united with the new component C.

– If no significant spacial variation of ofJ can be observed terminate the optimization.

We use the following simple test to determine whether ofJ has a significant extremum. We first smooth ofJ

using a Gaussian filter. After that we compare the maximum and minimum value of the smoothed ofJ on the
grid points with the mean of these data. If the maximum or minimum deviates from the mean by more than a
fixed multiple of the standard deviation (usually three times the standard deviation) then we introduce a new
component in the vicinity of the extremum. We also make sure that the new component (a circle with center at
the extremum) is small enough not to intersect any other existing component of C.

At this point, we briefly address the principal question of possible topology changes using level-set tech-
niques. It is well-known that splitting and merging of domains is naturally included in the level-set meth-
odology and can be achieved by velocity functions which are local in the sense that the velocity is given
only in a neighborhood of the current interface. Although the level-set method is capable of introducing
new components of the interface at locations away from the current interface by moving the graph
{x, y = /(x)} of the level set function / across the plane y = 0 at a certain (desirable) point, this can only
be achieved if the speed function is defined at such points and has the tendency to push the level set func-
tion across the zero-plane. Thus, the speed function must incorporate the necessary information at which
points the insertion of new components is desirable. Our approach tries to use the information in the func-
tional derivative to introduce new components in a (discontinuous) re-initialization procedure for the level
set function and restart the algorithm with the new initial level set function. An algorithm which intro-
duces new components by continuously propagating the level set function across the zero-plane was
presented in [7].
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4. Numerical results

Within this section we will present some numerical results for the reconstructions from artificial and real
data, as well as comparisons with other methods.

4.1. A reconstruction from artificial data

First, we report the inversion of tomography data g(s, x) which are created synthetically using a piecewise
constant density distribution f as starting point. There are five regions on which the density has a constant
value, numbered 1, . . ., 5 (see Fig. 1). The image for the density has a size of 320 · 320 pixels, and the mea-
surements were simulated over the full circle for 319 angles and 320 offsets. The data were contaminated with
18% Gaussian noise. See Fig. 2 for the noise-free and noisy data. The reconstruction of the density distribution
and its contour is shown in Fig. 3. Clearly, the reconstructed contour is very close to the original one. A com-
parison of the exact values of f and its reconstruction f d

a;MS in the regions 1,. . .,5 is given in the following table:
Region
 f
Fig. 1. Density distribution f.
f d
a;MS
1
 7
 6.9

2
 2
 1.65

3
 4
 4.2

4
 11
 11.05

5
 8
 8.15
We conclude that, despite of the high data noise of 18%, the reconstruction quality is astonishingly good with
respect to both, the contour and the density values.

In Fig. 4, the performance of the insert strategy on the artificial data set described above is illustrated. The
noise-level was is set to 14%. The first row of images shows the real boundaries of the objects in the image and
the current zero level-set immediately after a new component of the contour is inserted. In the second row we
plot the current zero level-set atop of a color-coded plot of the functional derivative R*(Rf � gd). Each new
component is placed such that it encloses the maximum or minimum of the function R*(Rf � gd). It is seen
that the locations of new contours are correctly chosen in the vicinity of objects which have not yet been
detected. The two last images in both rows show a small component which is inserted at a stage where all
objects have already been found. This small contour, however, vanishes again after few iterations. The



Fig. 2. Sinogram data g(s,x) (left) and its noisy version gd(s,x) (right).

Fig. 3. (Left) Reconstructed density distribution. (Right) Contours of the true distribution (solid) and reconstructed distribution (dashed).

Fig. 4. Performance of the insert strategy.
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algorithm is quite stable with respect to the correct detection of all objects in the image and does not produce
persistent false contours.

A frequently used strategy for the detection of geometries with complicated topological structure is, to start
with an initial level-set with many small components. The hope is that the small structures merge and split in
the process of evolution and capture the correct topology in the end. This strategy, however, proved not to be
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very successful for our Mumford–Shah model, as the numerical example in Fig. 5 shows. We start with an
initial level-set with many components and many holes. After 150 iterations, the components in the center
of the image have merged and correctly represent the outer shape of the large ellipse and one of the inclusions.
There is no chance, however, to recover the remaining two objects inside the ellipse, since the algorithm has –
at that point of the evolution – no possibility to create new contours inside existing ones. Outside the ellipse 6
objects are still present but have very low contrast with respect to the background.

4.2. Parameter studies

For the study of the influence of the parameters m and a on the quality of the reconstruction and the per-
formance of the numerical algorithm we chose a synthetic test example with seven objects of different size,
contrast, and distance from the boundary. The exact density distribution, the noise-free and noisy sinograms
are shown in Fig. 6. The noise level is 5%. With the choice of parameters a = 1 and m = 3.3 all components
could be resolved (see Fig. 7). The reconstruction of the innermost components which have the least contrast
with respect to the background shows slightly oscillating contours, thus reflecting the ill-posedness of the
problem in the presence of noise.

The regularization parameter a has a significant influence on the reconstruction only for values a > 102.
Below that value the influence of a is not significant. The algorithm, however, still converges and usually finds
either all seven objects or six of them. The contours can be rather jagged. An explanation of the convergence
of the algorithm for the ill-posed inversion of tomography data even if the regularization is completely
switched off can be found in the fact that the degree of ill-posedness is significantly reduced by the restriction
of admissible densities to the class of piecewise constant functions (2.2). Therefore the ill-posedness can
express itself only in the development of very jagged contours. This, however, is suppressed to a certain degree
by the inherent regularization of the level set method [21]. For large values of a the usual over-regularization
Fig. 5. Starting configuration with many components and holes, result of the reconstruction after 150 steps.

Fig. 6. Exact density distribution, exact and noisy sinograms.
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effects (loss of details, over-smoothed features) become visible. A comparison for different values of a with
fixed m = 1 is shown in Fig. 8.

The parameter m, i.e. the weight which is given to the first derivative in the chosen metric (3.19) does not
greatly influence the reconstruction apart form a slight regularizing effect shown in Fig. 9, where it can be seen
that for a = 0 (no penalty on the length of the contour) the resulting contour for large m is much smoother than
the contour for m = 0, with the drawback that an additional component of the density is introduced. Note that
over-regularization is clearly visible in Fig. 8. For the choice m = 1 the regularizing effect of the length term is
not tampered by stability problems due to a large parabolic term and an explicit time-stepping method. The
greatest influence of the parameter m is on the iteration number of the algorithm, especially if the regularization
parameter a is large, i.e. the parabolic nature of the evolution problem becomes dominant. Then, precondi-
tioning the L2-descent direction as in (3.20) reduces the number of iterations tremendously. In Table 1 the iter-
ation numbers are shown which are required until 6 (out of 7) objects are resolved. The insert strategy for new
components was switched off since for this test example no objects are included within others and we wanted
Fig. 7. Reconstruction of all seven components with an appropriate choice of parameters.

Fig. 8. Increasing over-regularization for growing a.



Fig. 9. Regularizing effect of the choice of the H1-metric for a = 0.

Table 1
Comparison of iteration numbers for different parameter choices

m = 102 m = 101 m = 100 m = 10�1 m = 10�2 m = 10�3 m = 0

a = 101 74 52 50 – 62 68 –
a = 102 105 79 134 526 1077 – 1243

Significant dependence on m for the larger value of a.
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to asses the capability of the algorithm to separate objects just by splitting level-sets. Thus, the resolution of
the components is achieved by pure level-set propagation starting form one contour which includes all seven
objects. One typical reconstruction is shown in Fig. 10.

4.3. Mumford–Shah versus L2-and BV-reconstructions

In this section we compare the reconstruction quality of our algorithm with results obtained by two stan-
dard algorithms: Tikhonov regularization and Bounded Variation regularization. Using Tikhonov regulariza-
tion, the approximation to the solution of the equation R(f) = g is computed as the minimizer of the standard
Tikhonov functional
Fig. 10. Reconstruction of densities and objects after 134 iterations. Parameters m = 1, a = 100.
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f d
a ¼ arg min

f
kRf � gdk

2
L2 þ akf k2

L2

n o
;

whereas the L2 penalty term is replaced by the BV semi-norm for Bounded Variation regularization,
f d
a;BV ¼ arg min

f
kRf � gdk

2
L2 þ akf kBV

n o
:

In both cases, we chose the regularization parameter a such that the best possible reconstruction quality in the
L2 norm was reached, e.g.
aopt ¼ arg min
a
kf d

a � f kL2 ;Rf ¼ g
� �

:

Fig. 11 shows the reconstruction results for the noisy data from Fig. 2.
Clearly, Tikhonov regularization with L2 penalty term gives the worst reconstruction. Some parts of the

image are hardly reconstructed, e.g. region 2 almost vanishes in the reconstruction. Additionally, the image
appears to be noisy, and segmentation algorithms will have difficulties to detect the contours. The BV-recon-
struction is better and appears to be smoother. This is mainly due to the fact that BV regularization gives par-
ticularly good results for the class of images in PC(DnC) considered in this paper. Still, as the following table
shows, the reconstruction quality is not as good as for our Mumford–Shah approach:
Method
ig. 11. Reconstructed density distributions. (Left)
Relative reconstruction error (%)
Mumford–Shah
 12

BV
 16

Tikhonov
 26
Here, the relative reconstruction error is defined by kf d
a � f kL2=kf kL2 . Moreover, the contours of the object

cannot be detected as well as in the Mumford–Shah approach.

4.4. Reconstruction/segmentation from real data

We consider the reconstruction from real CT data that where collected in the context of a SPECT (single
photon emission computed tomography) measurement. The SPECT data are described by the attenuated
Radon transform, that depends nonlinearly on the emission function and the density distribution, but is only
linear dependent on the activity function if the density function is known. Besides a SPECT scan, most SPECT
scanners take CT measurements simultaneously. The data we use come from a complementary CT scan along
with SPECT measurements. For our experiment, the so-called Jaszczack torso phantom was used. This phan-
tom has the shape of a human torso, is filled with water and has inserts for organs like lungs or liver. Due to
the simultaneous measurement process it turns out that the quality of the CT scan is much worse than for
Tikhonov regularization with L2 penalty term. (Right) BV regularization.



Fig. 12. Sinogram data from the Jaszczack torso phantom (l) and standard reconstruction (r).

Fig. 13. Reconstructions with the Mumford–Shah algorithm for different regularization parameters: a = 0.8(u.l.), a = 0.08(u.r.),
a = 0.008(l.l.) and the reconstructed contours (l.r., a = 0.8 dash-dot, a = 0.08 dashed, a = 0.008 solid). The color scale in the
reconstructions is the same as in Fig. 12.
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regular CT scanners, in the sense that the data are much noisier. See Fig. 12 for the measurement and a clas-
sical CT inversion. The data were collected over 120 angles and 128 samples, which gives a size of 128 · 128
for the reconstruction. The noise is estimated between 15% and 20%. The reconstruction reflects the high noise
in the data. In principle, there should be only two values of the density (only the lungs have a different value),
but the standard reconstruction is quite ragged, and a segmentation, e.g. for the determination of the bound-
ary of the lungs, seems quite difficult. Fig. 13 shows the results of the reconstructions using our Mumford–
Shah algorithm. If the regularization parameter a is chosen too large, the outer shape is reconstructed and
smooth, but the inclusions (lungs) vanish. On the other hand, if a is to small, then the outer shape is not
smooth any more. For an intermediate value of a the reconstruction is optimal in the sense that the contours
are reasonably smooth and all present objects are resolved.
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